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Abstract. We develop a non-perturbative local moment approach (LMA) for the gapped Anderson impurity
model (GAIM), in which a locally correlated orbital is coupled to a host with a gapped density of states.
Two distinct phases arise, separated by a level-crossing quantum phase transition: a screened singlet phase,
adiabatically connected to the non-interacting limit and as such a generalized Fermi liquid (GFL); and an
incompletely screened, doubly degenerate local moment (LM) phase. On opening a gap (δ) in the host, the
transition occurs at a critical gap δc, the GFL [LM] phase occurring for δ < δc [δ > δc]. In agreement with
numerical renormalization group (NRG) calculations, the critical δc = 0 at the particle-hole symmetric
point of the model, where the LM phase arises immediately on opening the gap. In the generic case by
contrast δc > 0, and the resultant LMA phase boundary is in good quantitative agreement with NRG
results. Local single-particle dynamics are considered in some detail. The major difference between the
two phases resides in bound states within the gap: the GFL phase is found to be characterised by one
bound state only, while the LM phase contains two such states straddling the chemical potential. Particular
emphasis is naturally given to the strongly correlated, Kondo regime of the model. Here, single-particle
dynamics for both phases are found to exhibit universal scaling as a function of scaled frequency ω/ω0

m for
fixed gaps δ/ω0

m, where ω0
m is the characteristic Kondo scale for the gapless (metallic) AIM; at particle-hole

symmetry in particular, the scaling spectra are obtained in closed form. For frequencies |ω|/ω0
m � δ/ω0

m,
the scaling spectra are found generally to reduce to those of the gapless, metallic Anderson model; such
that for small gaps δ/ω0

m � 1 in particular, the Kondo resonance that is the spectral hallmark of the usual
metallic Anderson model persists more or less in its entirety in the GAIM.

PACS. 72.15.Qm Scattering mechanisms and Kondo effect – 75.20.Hr Local moment in compounds and
alloys; Kondo effect, valence fluctuations, heavy fermions

1 Introduction

The Anderson impurity model (AIM) [1] plays a central
role in our understanding of correlated physics in many-
electron systems. Comprising a single impurity site with
local Coulomb interaction, coupled to a a non-interacting
band of metallic electrons, it describes a range of inter-
esting physical phenomena—most notably the celebrated
Kondo effect in dilute metal alloys [2] and mesoscopic
quantum dots [3].

The spin- 1
2 Kondo effect arising in the AIM is now

well understood by a combination of exact and approxi-
mate theoretical approaches [2]. Below some characteristic
Kondo temperature TK, a complex many-body state de-
velops in which the impurity spin is completely screened
by the host metal, leading at low energies to a ‘local’ Fermi
liquid.

Here by contrast we consider an Anderson impurity in
a gapped host, where the density of states vanishes over a

a e-mail: mrg@physchem.ox.ac.uk

finite range about the chemical potential; a model of rele-
vance to Anderson impurities in both semiconductors and
BCS superconductors [4–7] (the latter in the particle-hole
symmetric limit mapping on to a particular gapped AIM,
see e.g. [5]). Since the Kondo effect in metals relies on the
existence of conduction band states near the Fermi level
[2], the gapped AIM (GAIM) naturally displays rather
different physics from its metallic analogue.

Indeed, aspects of its rich behaviour have been dis-
cussed in the literature. Early studies involved approxi-
mate analytical methods (poor man’s scaling, 1/N and
non-crossing expansions) [8,9], quantum Monte Carlo [8–
10] and the numerical renormalization group (NRG) [10].
At a critical value of the gap, δc, each predicted a quan-
tum phase transition, between a Kondo-screened phase
and a ‘local moment’ (LM) phase where the impurity
spin remains free as T → 0, but no general consensus
was reached as to the nature and location of the tran-
sition. The NRG was later used to calculate thermo-
dynamics of the model by Chen and Jayaprakash [11],
who also derived an effective low-energy Hamiltonian
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showing that a level-crossing transition from singlet to
doublet ground-states arises above δc, with δc identically
zero when the model is particle-hole symmetric. A density-
matrix renormalization-group approach [12], on the other
hand, found no qualitative difference between the particle-
hole symmetric and asymmetric cases. The present au-
thors have confirmed [13] that the NRG picture [11] is
correct by considering perturbation theory to all orders
in the Coulomb interaction, U ; showing that the singlet
phase behaves as a generalized Fermi liquid (GFL) in
the sense of being perturbatively connected to the non-
interacting limit, but that the particle-hole symmetric
point of the model is not perturbatively connected to the
non-interacting limit for any non-zero gap, and as such is
a non-Fermi liquid.

In this work we analyze the GAIM using the local mo-
ment approach (LMA) [14–17], which has hitherto been
used successfully to describe the metallic Anderson model
itself [14–16], the pseudogap Anderson model [17–20], and
the periodic Anderson model within dynamical mean-field
theory [21–23]. Here we extend the approach to encompass
the subtle physics of the GAIM. By comparison to results
from NRG [11] we show that the LMA indeed captures
the problem rather well, recovering for example the ex-
act asymptotic behaviour of bound states in the gap, and
yielding very good agreement with NRG results for the
phase diagram of the model. New results for single-particle
dynamics of the GAIM on all energy scales are also ob-
tained, including in particular universal scaling behaviour
in the strong coupling, Kondo regime of the model.

The structure of the paper is as follows. We begin by
outlining the relevant background material in Section 2,
before moving on to a more detailed discussion and analy-
sis of the NRG results [11] in Section 3. Our implementa-
tion of the LMA for the GAIM is given in Section 4, and
in Sections 5 and 6 our analytical and numerical results
are presented. The paper ends with a conclusion.

2 The gapped Anderson model

In conventional notation we write the generic Anderson
Hamiltonian [2] as

Ĥ =
∑

k,σ

εkn̂kσ +
∑

σ

εin̂iσ +Un̂i↑n̂i↓+
∑

k,σ

(Vikc†kσciσ +h.c.)

(1)
where n̂jσ = c†jσcjσ is the number operator for σ-spin
electrons on site j (with j = i referring to the impurity
site and j ≡ k to the host band states). The first term
in equation (1) thus describes the non-interacting host
band, the second and third terms describe the impurity
with onsite interaction U , and the fourth term hybridizes
the two.

In this work we focus on single-particle dynamics, em-
bodied in the impurity Green function G(ω) [the Fourier
transform of G(t) = −i〈T̂ (ciσ(t)c†iσ)〉]. Analyticity dictates
that G(ω) is specified completely by its spectral function

D(ω) = −π−1 sgn(ω)G(ω) via

G(ω) =
∫ ∞

−∞

D(ω′)
ω+ − ω′ dω′, (2)

where ω+ = ω + i0+ sgn(ω).
In the non-interacting (U = 0) limit, the Green func-

tion is [2]
g(ω) = [ω+ − εi − ∆(ω)]−1 (3)

with ∆(ω) =
∑

k |Vik|2[ω+ − εk]−1 the host-impurity hy-
bridization function. Taking Vik independent of k for con-
venience,

∆(ω) = V 2
∑

k

P

(
1

ω − εk

)
− iπ sgn(ω)V 2

∑

k

δ(ω − εk)

(4)
≡ ∆R(ω) − i sgn(ω)∆I(ω). (5)

But ρ(ω) =
∑

k δ(ω− εk) is simply the density of states of
the conduction band, so ∆I(ω) = πV 2ρ(ω). An infinitely-
wide, gapped host thus corresponds to a ∆I(ω) of form

∆I(ω) =

{
∆0 for |ω| > δ

0 otherwise
(6)

with ∆0 constant, the corresponding real part following
from analyticity as

∆R(ω) = −∆0

π
ln

∣∣∣∣
ω + δ

ω − δ

∣∣∣∣ . (7)

In the general interacting case (U > 0) the full Green
function is conventionally related to g(ω) by Dyson’s equa-
tion

G(ω) =
1

g(ω)−1 − Σ(ω)
, (8)

which defines the (single) self-energy Σ(ω). We note here
that the LMA in fact employs a different decomposition
of G(ω), in terms of two self-energies, although the single
Σ(ω) can of course always be obtained from equation (8)
if G(ω) is known.

Finally, this is a convenient point to define a set of di-
mensionless parameters that specify the model. We define
the dimensionless interaction strength

Ũ =
U

π∆0
, (9)

and relate the level energy εi to U by means of the asym-
metry parameter

η = 1 +
2εi
U

. (10)

For later use we note that the particle-hole–symmetric
limit of the model, arising when εi = −U/2, corresponds
to η = 0 (the host itself is particle-hole symmetric, as
above). When specifying the gap δ in Section 5 ff, we will
usually employ units of the Kondo scale in the absence of
the gap.
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3 Numerical renormalization group results
for the GAIM

Thermodynamics of the GAIM have been calculated by
Chen and Jayaprakash (CJ) using a modified NRG ap-
proach [11]. The standard method [2] for the metallic
AIM relies on a logarithmic discretization of the con-
duction band, allowing it to be mapped onto an infinite
linear chain with exponentially-decreasing coupling con-
stants along the chain. The same procedure can be per-
formed for the GAIM but, because there is a gap in the
conduction band, only a finite number of conduction band
states are obtained in the logarithmic discretization [11],
and the Hamiltonian thus maps onto a finite linear chain.
The NRG iterative diagonalisation is thus performed only
up to a maximum iteration number N = N0 instead of
allowing the calculation to run until the NRG flow tends
to a stable fixed point. The final Hamiltonian HN0 ob-
tained from iteration N0 then describes the low-energy
behaviour within the gap, and can be used [11] to obtain
the properties of the system on all temperature scales be-
low TN0 ∼ DΛ−N0/2 (with D the host bandwidth and
Λ � 1 the conventional [2] NRG discretization parame-
ter).

The numerical calculations [11] imply that the NRG
recovers the basic structure of the quantum phase transi-
tion expected [13] from infinite-order perturbation theory
in U . In the particle-hole symmetric limit εi = −U/2, the
ground state of the system is found always to be a dou-
blet. Away from particle-hole symmetry by contrast, the
ground-state is a Kondo-quenched singlet for sufficiently
small gaps but a doublet for larger δ.

More important here are some analytical results aris-
ing from the NRG. For the gapped Kondo model with
potential scattering, itself obtained from the GAIM under
a Schrieffer-Wolff transformation [2] when U � ∆0 and
−εi � ∆0, CJ have derived effective Hamiltonians valid
on energy scales smaller than the gap δ. For δ � T 0

K,
where T 0

K is the Kondo temperature in the absence of the
gap, the low-energy Hamiltonian takes the form of a pair
of orbitals coupled to an impurity spin τ by exchange and
potential scattering,

Heff = − 1
2Jτ · f †

σσσσ′fσ′ + Kf †
σfσ + w(f †

σgσ + h.c.) (11)

(with a summation convention for repeated spin indices).
The renormalized parameters of the effective model turn
out to be [11] of the form J ∼ T 0

K and K ∼ K0T
0
K/D,

with K0 the ‘bare’ Schrieffer-Wolff potential scattering,
and the ‘hopping’ w = α

√
δT 0

K (with α a constant of
proportionality, determined in practice by fitting to the
numerical RG results).

This effective Hamiltonian, equation (11), can be used
to derive a number of important results. It is dominated
by its three lowest eigenstates, which we label in the form
(Q, S) with Q the charge of the system relative to one
electron per orbital, and S its total spin. The three lowest
states are then the doublet (0, 1

2 ) and the singlets (−1, 0)
and (1, 0). In the particle-hole symmetric limit [for which
(±1, 0) are degenerate], CJ show that the doublet (0, 1

2 )

0

δ

E

δc

(0, 1
2 )

(−1,0)

(1,0)

Fig. 1. Schematic representation of the quantum phase tran-
sition away from particle-hole symmetry. The three solid lines
represent the evolution (with increasing gap, δ) of the ener-
gies of the (0, 1

2
) and (±1, 0) states of the effective Hamilto-

nian equation (11) as discussed in text. The dotted line marks
the critical δc at which point the lowest two levels cross. The
dashed lines show schematically the allowed single-particle ex-
citations from the ground state for both δ < δc and δ > δc:
in the former case, only (0, 1

2
) is accessible; for the latter by

contrast, both low-lying excited states can be reached by the
addition/removal of a single electron.

is always the ground state, i.e. the system adopts the LM
ground state. Away from particle-hole symmetry, for suf-
ficiently small gaps δ/T 0

K, it is by contrast straightfor-
ward to show that the ground state is one of the (now
non-degenerate) singlets, (−1, 0) or (1, 0), depending on
whether K > 0 or K < 0 respectively. These singlets cor-
respond to the GFL phase of the model. Upon increasing
δ/T 0

K however, there is a level crossing [11] of the ground
state with the excited doublet (0, 1

2 ), and hence the quan-
tum phase transition to the LM state.

At this stage we can make an important deduction
from the schematic behaviour of the level crossing, which
will ultimately be used to develop the method used within
the LMA for the GAIM. Figure 1 shows schematically the
energy levels of the effective Hamiltonian equation (11)
described above, taking for specificity K > 0 such that
(−1, 0) is the ground state at small δ/T 0

K. More precisely,
(−1, 0) is the ground state for all δ < δc, whereas for δ > δc

the order of the (−1, 0) and (0, 1
2 ) levels is interchanged

and the latter is hence the ground state. The (1, 0) state
remains an excited state for all δ.

Now consider the single-particle excitations of the sys-
tem from the ground state. For δ < δc, the only possi-
ble single-particle excitation within this low-energy mani-
fold is from (−1, 0) to (0, 1

2 ). [There is an excitation from
(−1, 0) to the (−2, 1

2 ) state of Eq. (11), but it is of much
higher energy and is irrelevant to the discussion here]. By
contrast, as soon as one enters the LM phase for δ > δc,
there are two possible low-energy excitations, from (0, 1

2 )
to (±1, 0). And although the energy of the transition be-
tween (0, 1

2 ) and (−1, 0) vanishes as one passes through the
phase transition at δc, the energy of the (0, 1

2 ) → (1, 0) is
finite as soon as one enters the LM phase. Hence a pole



132 The European Physical Journal B

in the single-particle spectrum of the system occurs dis-
continuously at a finite frequency when one crosses the
GFL→LM phase boundary. We shall see that this be-
haviour can indeed be recovered quite straightforwardly
by the two–self-energy description used by the LMA in
Section 6.

In addition, a useful result [11] can be obtained from
equation (11) in the particle-hole–symmetric limit. As
mentioned above, in this case the (0, 1

2 ) LM state is the
ground state for all δ, and the two excited states (±1, 0)
are degenerate. One can calculate perturbatively the ex-
citation energy from (0, 1

2 ) to (±1, 0) as shown in [11]: the
result is that

∆E ∼ w4

J3
∝ δ2

T 0
K

(12)

for small w. Since the energy gap corresponds to the fre-
quency at which poles arise (symmetrically) in the single
particle spectrum D(ω), this result provides a benchmark
for any approximation to the single-particle dynamics.

Finally, we can draw a general conclusion from the
NRG analysis of the GAIM. We explained above how the
NRG is in essence identical to that of the metallic AIM
for iteration numbers N ≤ N0 (corresponding to energy
scales � δ). This means that both the thermodynamics of
the GAIM for T � δ, and its dynamics for ω � δ, will
be essentially unchanged from those of the parent metallic
AIM. This is an important argument. In particular, if δ �
T 0

K then it follows that the gapped system will appear to
display the same Kondo physics as the metallic case, with
deviations arising only on the lowest energy scales of the
order of the gap (for example, one would still expect to see
the vast majority of the characteristic Kondo resonance
in the single-particle spectrum). We will make use of this
argument throughout the paper; in particular it will be
used to obtain the self-consistency criterion for the LMA
in the LM phase (see Sect. 4.2).

4 Local moment approach to the GAIM

The LMA [14–16] centres on a two–self-energy description
of the local impurity propagator. Such a description arises
naturally at the mean-field level of unrestricted Hartree
Fock (UHF) [1], where the two self-energies are the ‘static’
Fock bubble diagrams that represent the interaction be-
tween the added/removed σ-spin electron and each of the
two broken-symmetry mean-field ground states. The LMA
overcomes the intrinsic deficiencies of crude static mean-
field theory by introducting additional, dynamical con-
tributions to the self-energies. These describe low-energy
tunnelling processes between the locally degenerate mean-
field states, and as such allow for the possibility of restora-
tion of broken symmetry and hence recovery of Fermi liq-
uid behaviour at low-energies.

We point out here that the broken-symmetry arising
at mean-field level is naturally restored on the lowest fre-
quency scales, while at higher frequencies the symme-
try remains effectively broken and the two LMA Green

functions G↑(ω) and G↓(ω) are distinct. Such a broken-
symmetry description of the Kondo physics arising in
a GFL phase is known from other theories, notably in
NRG where at high frequencies the physics is controlled
by the broken-symmetry ‘local moment’ fixed point (the
present authors have in fact shown [24] that the same two–
self-energy description used within the LMA arises also
in the NRG). Likewise, Anderson, Yuval and Hamann’s
[25] pioneering description of the Kondo effect—in which
the problem is viewed as a one-dimensional gas of spin-
flips propagating in time—is also fundamentally a broken-
symmetry approach: on short timescales (high frequen-
cies) the impurity spin is either ↑ or ↓, and only on longer
timescales on the order of �/T 0

K is symmetry restored and
the Kondo singlet formed.

Moreover, we add [18] that in order to describe a quan-
tum phase transition between a GFL phase and a broken-
symmetry LM phase, the underlying theory must be suf-
ficiently general to capture both phases: one cannot hope
to obtain a satisfactory description of a broken-symmetry
phase using a theory which a priori requires the ground
state to be a singlet. To this end the two self-energy de-
scription inherent to the LMA, combined with the possi-
bility of symmetry restoration at low-energies, is a neces-
sity.

To implement the LMA for the GAIM, we follow the
preliminary analysis of reference [15]. The Green function
G(ω) is written as the (rotationally invariant) average of
two broken-symmetry propagators

G(ω) = 1
2 [G↑(ω) + G↓(ω)] , (13)

each of which is expressed in terms of a Dyson equation

Gσ(ω) =
1

g(ω)−1 − Σ̃σ(ω)
(14)

with Σ̃↑(ω) and Σ̃↓(ω) the two self-energies. These are
constructed from mean-field-like propagators

Gσ(ω) =
[
ω+ − ei − 1

2σU |µ| − ∆(ω)
]−1 (15)

in which the mean-field parameters ei and |µ| are deter-
mined by a pair of appropriate self-consistency conditions
(to be described in detail later). The self-energies are sep-
arated into a static contribution Σ̃0

σ (i.e. the sole contri-
bution at UHF level) plus a dynamical piece Σσ(ω) =
ΣR

σ (ω) − i sgn(ω)ΣI
σ(ω),

Σ̃σ(ω) = Σ̃0
σ + Σσ(ω). (16)

The static self-energies are given diagrammatically by
the Fock bubble [14], which translates simply as

Σ̃0
σ = U

∫ 0

−∞
dω D0

−σ(ω). (17)

with
D0

σ(ω) = − 1
π

sgn(ω) ImGσ(ω). (18)
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The dynamical self-energies are approximated by the RPA
particle-hole ladder sum [14]. Specifically, for Σ↓(ω),

Σ↓(ω) =
U2

2πi

∫ ∞

−∞
dω1 Π+−(ω1)G↑(ω − ω1), (19)

where Π+−(ω) is the transverse spin-polarisation propa-
gator

Π+−(ω) =
0Π+−(ω)

1 − U0Π+−(ω)
, (20)

and

0Π+−(ω) =
i

2π

∫ ∞

−∞
dω1 G↓(ω1)G↑(ω1 − ω). (21)

Likewise, Σ↑(ω) is obtained from the analogues of equa-
tions (19)–(21) with ↑ and ↓ interchanged.

As noted previously [14,15], analyticity of Π+−(ω)
places restrictions on the choice of |µ| and ei. The (ei, |µ|)
plane is found to divide into ‘stable’ and ‘unstable’ re-
gions, the border between which corresponds to the line
of solutions one would obtain from pure UHF alone,
|µ| = |µ0(ei)| (see Fig. 2 of Ref. [15]). It is implicit in
the following that the ei and |µ| used are always chosen
to satisfy this analyticity requirement.

The stability border has however a further significance
within the LMA. If one chooses |µ| = |µ0(ei)|, i.e. a point
on the stability border, it is readily shown [14,15] that
ImΠ+−(ω) has a pole at ω = 0 identically. Upon moving
away from the border into the stable region, the pole is
found to shift to a positive, finite frequency (ultimately
becoming a sharp resonance deeper in the stable region).
As for the gapless (metallic) AIM [14,15], we use the po-
sition of this low-energy excitation (pole or resonance) in
ImΠ+−(ω) to define the Kondo scale for the GAIM, and
henceforth denote this scale ωm.

From the overview given above, the reader will notice
that the basic structure of the LMA Green functions used
in this work—including the particular class of dynami-
cal self-energy diagrams summed in practice—remains un-
changed from that used in reference [15]. The most signif-
icant difference in the LMA for the GAIM is the choice
of |µ| and ei, as we now explain. It turns out that one re-
quires different self-consistency criteria for the two phases,
GFL and LM. The former is in fact the simpler of the two,
and we thus consider it first.

4.1 LMA for the GFL phase

In the GFL phase, the usual LMA procedures of symmetry
restoration and satisfaction of the Friedel sum rule [15] can
be used to determine |µ| and ei completely and uniquely.
We follow the approach described in section 4 of reference
[15], employing the symmetry restoration condition,

Σ̃↑(ω = 0) = Σ̃↓(ω = 0), (22)

and using the generalized Friedel sum rule appropriate to
the GAIM [13] (which itself follows from the Luttinger

integral theorem [13])

nimp = 1 − sgn(ε∗i ) (23)

where ε∗i = εi + ΣR(0) is the renormalized level energy of
the impurity. nimp is the change in number of electrons
in the system due to addition of the impurity [2] (given
explicitly by Eq. (24) below). Note that, in contrast to the
gapless AIM [2] where nimp can vary continuously between
0 and 2, equation (23) shows that nimp for the GAIM can
take only the discrete values 0 or 2, according to whether
the renormalized level ε∗i > 0 or < 0 respectively.

In practice, the frequency integral [2]

nimp = Im
2
π

∫ 0

−∞
dω

[
1 − ∂∆(ω)

∂ω

]
G(ω) (24)

for nimp is rather sensitive to numerical errors. In order to
make the calculation stable, we first separate the integrand
into its real and imaginary parts. Using equation (5) for
∆(ω),

∂∆(ω)
∂ω

=
∂∆R(ω)

∂ω
− i∆0 sgn(ω) [δ(ω + δ) + δ(ω − δ)] ,

(25)
where the explicit form of ∆I(ω) (Eq. (6)) has been used.
Substituting equation (25) into equation (24), it can then
be shown that

nimp =
∆0

π

∑

σ

Re Gσ(−δ)

+
∑

σ

∫ 0

−∞
dω Dσ(ω)

[
1 − ∂∆R(ω)

∂ω

]
, (26)

with the LMA Gσ(ω) defined by equation (14) and
Dσ(ω) = −π−1 sgn(ω)ImGσ(ω). The ω-integral of∑

σ Dσ(ω) gives the number of electrons on the impurity,
ni, and from the explicit form of ∆R(ω) in equation (7) it
follows that

nimp = ni +
∆0

π

∑

σ

Re Gσ(−δ)

+
∆0

π

∑

σ

[∫ 0

−∞
dω

Dσ(ω)
ω + δ

+
∫ 0

−∞
dω

Dσ(ω)
ω − δ

]
.

(27)

Then, by noting that the integrals in the second line are
related to the one-sided Hilbert transforms of the LMA
spectra,

G±
σ (ω) =

∫ ∞

−∞
dω1

Dσ(ω1)θ(±ω1)
ω − ω1 ± i0+

(28)

(with θ(x) the unit step function), and using equation (2)
to write Gσ(−δ) = G+

σ (−δ) + G−
σ (−δ), one can simplify

equation (27) to

nimp = ni +
∆0

π

∑

σ

[
Re G+

σ (−δ) + Re G−
σ (δ)

]
. (29)
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This is the equation from which nimp is calculated in prac-
tice, with the real parts of G±

σ (ω) obtained from equation
(28), and ni obtained from direct integration of the impu-
rity spectrum.

The mean-field parameters |µ| and ei are readily deter-
mined for the GFL phase. For given ‘bare’ model param-
eters U , εi and δ, and a chosen ei, the local moment |µ|
is obtained by varying it until the symmetry restoration
condition equation (22) is satisfied. nimp is then calcu-
lated from equation (29), and ei itself is varied (ensur-
ing symmetry restoration at each step) until the resultant
nimp = 0 or 2 as required from the generalized Friedel sum
rule equation (23).

Before moving to the LM phase, we add that we
shall assume the system adopts the GFL phase whenever
symmetry-restored solutions with nimp = 0 or 2 can be
found. This naturally provides the criterion for determin-
ing the phase boundary between GFL and LM phases:
if one gradually increases δ from zero at fixed U and η
(= 1 + 2εi/U), then the point at which GFL solutions of
the above form cease to exist marks the quantum phase
transition to the LM phase. In Section 6.1, we shall see
that this approach leads to an excellent description of the
phase boundary between the GFL and LM phases.

4.2 LMA for the LM phase

Determining |µ| and ei within the LM phase requires a
significant extension of the LMA. The perturbative re-
sults that lead to symmetry restoration and the general-
ized Friedel sum rule obviously do not apply within the
LM phase [13], and hence new criteria are required to
determine |µ| and ei in this phase. We begin with the
particle-hole–symmetric limit (εi = −U/2), since in this
case ei vanishes by symmetry and hence only a condition
on |µ| is required. Once the basic method has been ex-
plained, we shall see that it is naturally extendible to the
LM phase away from particle-hole symmetry.

4.2.1 Particle-hole–symmetric LM phase

Previous LMA studies of non-Fermi-liquid behaviour
have centered on the pseudogap Anderson model [17–
20] (PAIM, for which ∆I ∝ |ω|r has a soft gap at the
Fermi level). In the particle-hole–symmetric PAIM, for
0 < r < 1

2 , the system evolves adiabatically from the non-
interacting limit into a GFL phase as U is increased from
zero. This GFL phase persists with increasing U up to a
finite critical Uc, at which the system undergoes a quan-
tum phase transition to the LM phase (which behaviour is
qualitatively different from that of the GAIM at particle-
hole symmetry, where the critical Uc = 0). One describes
the GFL phase of the PAIM in much the same way as
discussed in the previous section for the GAIM; ei = 0 by
symmetry, with the value of |µ| determined by the imposi-
tion of symmetry restoration. As U is increased inside the
GFL phase, the resultant |µ| tends toward the UHF value
|µ0| at Uc. Above Uc symmetry restoration is not possible

δ0

|µ0(0)|

|µ(0)|

|µ(δ)|

Fig. 2. Schematic illustration of the procedure for choosing
the moment |µ| in the LM phase that arises ubiquitously for
the particle-hole–symmetric limit of the GAIM. The solid line
represents the chosen |µ(δ)|; the dotted line represents the UHF
moment |µ0(δ)|.

for any stable |µ| (whence U = Uc is the quantum critical
point where the system undergoes the transition to the
LM phase). To describe the LM phase that persists for
all U > Uc, one simply sets |µ| = |µ0| throughout, which
means that |µ| is continuous across the phase boundary.
The physical basis for this is that when |µ| = |µ0|, the pole
in Im Π+−(ω) lies at ω = 0 (see Sect. 4 above). This rep-
resents a zero energy cost for flipping the impurity spin,
as expected for a doubly-degenerate LM phase.

From the discussion above, one might therefore expect
that the LM phase of the GAIM should likewise be de-
scribed within the LMA by setting |µ| to the UHF value
|µ0| throughout. This is not however the case, as can be
explained using a simple argument.

Consider how the system behaves when an infinites-
imal gap δ is opened in the conduction band, for some
fixed U > 0. The NRG analysis [11] discussed previously
makes it clear what the outcome should be. An infinites-
imal gap will make essentially no difference to the cou-
pling constants of the discretized linear-chain Hamilto-
nian, and hence the NRG will lead to the same results
known [2,14,15] to arise when δ = 0, except on the fre-
quency scales ω � δ (here infinitesimal by construction).
In particular, all manifestations of the Kondo effect—
including the Kondo resonance in the single particle spec-
trum of width ∼ TK—will be affected only on these very
lowest of frequency scales, and will appear otherwise un-
changed.

It is now not difficult to see why setting |µ| = |µ0|
throughout the LM phase of the GAIM is incorrect (with
reference to Fig. 2, which provides a schematic illustration
of the basic ideas involved). In the metallic AIM, where
δ = 0, the LMA moment |µ(δ = 0)| is determined by
symmetry restoration. This moment lies above the corre-
sponding UHF value |µ0(δ = 0)| (the dotted line in Fig. 2)
by an amount proportional [14] to T 0

K/U , and hence from
the discussion of Section 4 generates the exponentially-
small Kondo scale T 0

K within the LMA. Now, if one were
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simply to set |µ(δ)| = |µ0(δ)| for any finite δ, no mat-
ter how small, there would be a discontinuous drop in
|µ(δ)| upon opening the gap. 1 Such a drop in |µ(δ)| would
lead to qualitative differences between the LMA spectra
at δ = 0 and δ = 0+—on all frequency scales, not just
those of the order of the gap and below—and as such
must therefore be incorrect.

What is clear instead is that the LMA |µ(δ)| must
evolve continuously from its value at δ = 0, as this will
recover the correct behaviour at ω � δ for infinitesimally-
small gaps. To this end we simply set |µ(δ)| = |µ(δ = 0)|,
with a caveat explained below. In Section 5.1 we show
that, in addition to leaving the single-particle spectrum es-
sentially unchanged on frequency scales ω � δ, this choice
of |µ(δ)| more importantly recovers the correct δ → 0 be-
haviour inside the gap, ω < δ, as known from the NRG
studies [11] of Chen and Jayaprakash.

The caveat pertains to the case when δ is ‘large’—
which in practice means δ much greater than the Kondo
scale in the absence of the gap, ω0

m ≡ ωm(δ = 0). This
is because |µ(δ)| must be larger than |µ0(δ)| for stability,
but the latter increases monotonically with δ and therefore
crosses |µ(δ = 0)| at some finite δ (see Fig. 2). To avoid
the instability that arises if |µ(δ)| < |µ0(δ)| (see Sect. 4),
we simply set |µ(δ)| = |µ0(δ)| at and above this gap. |µ(δ)|
is thus given throughout the particle-hole–symmetric LM
phase by

|µ(δ)| = max (|µ(0)|, |µ0(δ)|) , (30)

as shown schematically by the solid line in Figure 2.
Before explaining how this procedure is generalized to

the particle-hole–asymmetric case, we add further that
equation (30) is physically natural for |µ(δ)| when the gap
is large compared to ω0

m and Ũ � 1. This is because, upon
increasing δ from zero, the UHF |µ0(δ)| rises sufficiently
rapidly with δ that equation (30) gives |µ(δ)| = |µ0(δ)|
whenever δ � ω0

m. The pole in Im Π+−(ω) then lies at
ω = 0, reflecting the fact that when δ � ω0

m, the dominant
transverse spin-excitation is the zero-frequency ‘Goldstone
mode’ associated with flipping the doubly-degenerate im-
purity LM state; any remnants of the Kondo effect and its
associated Kondo scale ω0

m are destroyed by the gap. Al-
though the precise behaviour in the intermediate regime,
δ ∼ ω0

m is less obvious, we simply argue that equation
(30) is a sensible choice for |µ(δ)| that bridges the known
δ � ω0

m and δ � ω0
m behaviour in a physically realistic

manner.

4.2.2 Particle-hole–asymmetric LM phase

The LM phase away from particle-hole asymmetry can
be handled using a straightforward generalisation of the
above procedure; enabling calulation of the LMA spectra
for any choice of the bare parameters Ũ , η and δ̃ (con-
sidered explicitly in Sect. 6). The motivation for our ap-

1 The value of |µ0(δ)| evolves smoothly and continuously
with increasing δ from its value at δ = 0.

proach is the discontinuity across the phase boundary, dis-
cussed in Section 3 and illustrated schematically in Figure
1; which can be captured by the LMA due to its inherent
two–self-energy description.

Let us consider the evolution of the system with in-
creasing δ away from particle-hole symmetry. For suffi-
ciently small gaps as seen in Figure 1, the system adopts
the GFL phase and there is correspondingly only one low-
energy single-particle excitation on energy scales below δ.
This is reflected by the single pole in D(ω) known from
perturbation theory [13]. As one approaches the phase
boundary from the GFL side, it follows from Figure 1
that the position of this pole must tend to ω = 0. Hence,
from equation (13), equation (14) and equation (3), both
self-energies must satisfy

εi + Σ̃σ(0) → 0 as δ → δ−c . (31)

On the other side of the transition, δ = δ+
c however, the

behaviour is very different. As seen in Figure 1, there are
now two poles. The one corresponding to the (now re-
versed) excitation seen in the GFL phase remains at a
vanishingly-small energy difference, but an additional pole
also arises at a finite frequency. This requires that either

εi + Σ̃↑(0) → 0 and εi + Σ̃↓(0) �= 0 as δ → δ+
c , (32)

or

εi + Σ̃↓(0) → 0 and εi + Σ̃↑(0) �= 0 as δ → δ+
c . (33)

We thus conclude that one of the self-energies Σ̃σ(0) must
be discontinuous across the GFL ↔ LM phase boundary.
This result is central to the LMA for the LM phase away
from particle-hole symmetry.

LM phase at δ+
c

For given U and εi (or η), the critical gap δc above which
GFL-phase solutions no longer exist is obtained as de-
scribed in Section 4.1; such that in the GFL phase at
δ = δ−c , equation (31) holds for both σ =↑ and ↓.

Now consider moving across the phase boundary to
δ+
c . It is necessary now to determine self-consistently the

new values of both |µ| and ei at this point, which we do
as follows: |µ| is determined by varying it until

εi + Σ̃σ(0) → 0 (34)

is satisfied for either σ =↑ or σ =↓ (i.e. until one or other
of Eq. (32) or Eq. (33) is satisfied2); and ei is determined
by requiring simultaneously that nimp = 1 (with nimp cal-
culated from Eq. (29)).

2 We note that there is no ambiguity associated with the
choice of σ in equation (34): in practice, self-consistent solu-
tions with nimp = 1 are found to arise only for one of σ =↑ or
σ =↓.
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The condition nimp = 1 is certainly non-trivial away
from particle-hole symmetry. It has been shown [18] to
arise for the LM phase of the PAIM; and we impose it
here for similar reasons, reflecting as it does perturbative
continuity (in the host-impurity coupling V ) of the LM
phase from the atomic limit (where nimp = 1 arises for
any εi < 0 and εi + U > 0). In addition, not only is an
integral nimp physically natural for a system with a gapped
density-of-states but, as for the PAIM [18], it turns out
that nimp = 1 is in fact the only possible integral value
for which self-consistent solutions of the above form can
be found.

LM phase for δ > δc

Once the self-consistent |µ| and ei are known for δ = δ+
c ,

we then extend the LMA method used in the particle-
hole–symmetric limit (Section 4.2.1 above). We remarked
above that the physics of the problem known from NRG
is recovered in the particle-hole–symmetric limit if one
chooses |µ(δ)| according to equation (30). We now extend
this to the general particle-hole asymmetric case by re-
quiring that one fixes both |µ(δ)| and ei at their values
obtained self-consistently at δ+

c [again with the same pro-
viso that |µ(δ)| is instead set to |µ0(δ)| when the latter
becomes larger than |µ(δ+

c )|]. Such an approach is the nat-
ural generalisation of the procedure used in the particle-
hole symmetric limit, in which case δc = 0 and ei = 0 are
known from the outset. In Section 6 we present numerical
results using this approach, and show that they too are
consistent with the behaviour known from NRG [11].

5 Analytic results at particle-hole symmetry

Before considering the numerics, we discuss some impor-
tant asymptotic results that can be obtained analytically
at particle-hole symmetry (εi = −U/2) where the LM
phase arises for all δ > 0. Our focus here is naturally the
strong coupling (‘Kondo’) regime Ũ = U/π∆0 � 1, with
the gap δ taken to be any finite multiple of the low-energy
Kondo scale in the absence of the gap, ω0

m = ωm(δ = 0);
and with ω0

m known from the LMA for the metallic AIM
[14] as

ω0
m = βU exp

(−π2

8
Ũ

)
(35)

(with β a pure constant O(1)), which we add gives the
exact exponential dependence of the Kondo scale [2,14].
In what follows, δ̃ = δ/ω0

m.
With ω̃ = ω/ω0

m, the two key results here are for the
frequency-dependence of the LMA self-energies:

−U

2
+ Σ̃R

↑ (ω) Ũ�1∼ −4∆0

π
ln

(
ω̃ + δ̃ + 1

)
(36)

and
Σ̃I

↑(ω) Ũ�1∼ 4θ
[
−(ω̃ + δ̃ + 1)

]
∆0. (37)

These equations hold for finite ω̃ = ω/ω0
m in the formal

strong coupling limit where ω0
m → 0. Their derivation is

given in the Appendix; here we take them as given.

5.1 Strong-coupling behaviour of the single-particle
spectrum

It is now of course straightforward to obtain the spectrum
D(ω) in closed form. We simply employ the asymptotic
forms of the self-energy equation (36) and equation (37)
in the Dyson equation (14). Since we have specified only
Σ̃↑(ω) above, it will be convenient to use the symmetry
D0

↑(ω) = D0
↓(−ω) to write D(ω) = D(−ω) in terms of

D↑(ω) only, i.e.

D(ω) = 1
2 [D↑(|ω|) + D↑(−|ω|)] . (38)

It is then readily shown that the band contribution to
D(ω) is

π∆0
bD(ω̃) =

1
2θ(|ω̃| − δ̃)

[
A(ω̃, δ̃)

]2

+ 1
+

1
2

[
θ(|ω̃| − δ̃) + 4θ(|ω̃| − δ̃ − 1)

]

[
B(ω̃, δ̃)

]2

+
[
1 + 4θ(|ω̃| − δ̃ − 1)

]2 ,

(39)

with

A(ω̃, δ̃) =
1
π

ln

(
|ω̃| + δ̃

|ω̃| − δ̃

)
+

4
π

ln(|ω̃| + δ̃ + 1) (40)

and

B(ω̃, δ̃) =
1
π

ln

(
|ω̃| − δ̃

|ω̃| + δ̃

)
+

4
π

ln(|ω̃| − δ̃ − 1). (41)

Inside the gap there are of course two symmetrically
distributed poles at ω̃ = ±ω̃p, with |ω̃p| < δ̃. These are
given by solution of ω + U

2 − ∆R(ω) − Σ̃R
σ (ω) = 0 (where

the ‘bare’ ω = ω̃ω0
m ≡ 0); and hence from equation (36)

and equation (7) by

ln

(
ω̃p + δ̃

δ̃ − ω̃p

)
+ 4 ln(ω̃p + δ̃ + 1) = 0, (42)

or equivalently

(ω̃p + δ̃)(ω̃p + δ̃ + 1)4 = δ̃ − ω̃p. (43)

On increasing ω̃ inside the gap from −δ̃ to +δ̃, the left-
hand side of equation (43) increases monotonically from 0
to 2δ̃(2δ̃+1)4, while the right-hand side decreases from 2δ̃
to 0. Hence there is always one solution of equation (43)
inside the gap (i.e. for |ω̃p| < δ̃); and it is simple to show
that it corresponds to ω̃p < 0.

We see directly from equations (39) and (42) that for
any particular choice of δ̃ = δ/ω0

m, the single-particle
spectrum is solely a function of ω̃ = ω/ω0

m. Hence there
is a scaling spectrum for each δ̃, onto which the numer-
ical finite-Ũ LMA spectrum will collapse when plotted
against ω/ω0

m for sufficiently strong coupling Ũ . In Sec-
tion 6 we show numerical calculations for the LMA at
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finite Ũ , which confirm the existence and form of the scal-
ing spectrum.

Before that however, there are two important conclu-
sions that may be drawn from the asymptotic forms of
equation (39) and equation (43). The first such result is
for the low-frequency pole behaviour inside the gap, which
enables comparison of the LMA description of the GAIM
to that from NRG [11].

5.1.1 Strong coupling behaviour inside the gap for δ̃ � 1

Using equation (43), we now show that in strong-coupling,
the LMA expression for the pole position in D(ω) reduces
to the same result obtained by Chen and Jayaprakash in
their NRG study of the problem [11].

When δ̃ � 1, the pole position |ω̃p| � 1, and hence
equation (43) can be expanded to leading order to give
(ω̃p + δ̃)[1 + 4(δ̃ + ω̃p)] = δ̃ − ω̃p; which simplifies to

2δ̃2 = −ω̃p(1 + 4δ̃ + 2ω̃p) (44)

and hence for δ̃ � 1 gives

|ω̃p| = 2δ̃2. (45)

Since ω0
m is proportional to the Kondo temperature in the

absence of the gap, T 0
K, equation (45) gives |ωp| ∝ δ2/T 0

K.
This result is precisely the form obtained by NRG, as dis-
cussed in Section 3 (see Eq. (12)). The LMA therefore
recovers the correct low-ω behaviour inside the gap of the
particle-hole symmetric LM phase. Such a result is cer-
tainly non-trivial, and provides further support for the
validity of our LMA scheme in the LM phase.

5.1.2 Behaviour of the scaling spectrum for ω̃ � 1

The second result that follows directly from equation (39)
is the large-ω̃ behaviour of the scaling spectrum. When
|ω̃| � δ̃ it is straightforward to see that

π∆0D(ω̃)
|ω̃|�δ̃

=
1
2

16
π2 ln2(|ω̃| + 1) + 1

+
1
2 [1 + 4θ(|ω̃| − 1)]

16
π2 ln2(|ω̃| − 1) + [1 + 4θ(|ω̃| − 1)]2

. (46)

This is precisely the form of the LMA scaling spectrum for
the metallic AIM [16] (which itself gives excellent agree-
ment with NRG calculations [16,24]). In other words, on
frequency scales much larger than the gap, the physics of
the system is effectively the same as it would be if the
gap were not present. Such behaviour is correct, follow-
ing directly from the overview of the NRG procedure in
Section 3: the NRG for the GAIM is identical to that for
the metallic AIM on energy scales much greater than that
of the gap, and hence all physical properties obtained for
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Fig. 3. LMA scaling spectrum for the particle-hole symmetric
GAIM, π∆0D(ω) versus ω̃ = ω/ω0

m. The dotted line shows
the gapless spectrum, δ = 0. The solid lines are for gaps δ̃ =
δ/ω0

m = 0.01 and 0.2 ((a)), and 0.5, 2 and 5 ((b)), in order of
increasing gap.

these energy scales will be independent of whether or not
the gap actually exists.

We point out here that if δ̃ � 1, then the scales on
which the GAIM scaling spectrum falls onto that of the
normal metallic AIM can be essentially small; indeed one
would expect that for δ̃ � 1 the scaling spectrum of the
GAIM should approach that of the metallic case for fre-
quencies around ω̃ ∼ 1 at least, and hence one would still
expect to see a partial Kondo resonance in the GAIM
spectrum. That this is indeed the case will now be shown
from the full scaling spectrum equation (39) for a range
of increasing δ̃.

5.2 Scaling spectra

In Figure 3(a) we show the LMA scaling spectrum,
π∆0D(ω) versus ω̃ = ω/ω0

m, for δ̃ = δ/ω0
m = 0.01 and

0.2 (solid lines, top to bottom), as well as for the metallic
AIM, δ̃ = 0 (dotted line). Note first that, in agreement
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with the preceding arguments, the GAIM spectra indeed
coincide with those of the metallic AIM when |ω̃| is much
greater than any of the chosen gaps δ̃ (in practice for
|ω̃| � 4). For the smallest gap shown, δ̃ = 0.01, the scal-
ing spectrum coincides with the δ̃ = 0 spectrum down to
frequency scales ω̃ ∼ O(δ̃). The Kondo resonance of the
metallic AIM is in consequence preserved more-or-less in
its entirety when such a small gap is introduced; and even
for the δ̃ = 0.2 example shown, a significant portion of the
Kondo resonance remains intact. [We add that the small
spectral ‘glitches’ at ω̃ = 1+ δ̃ are a well known artifact of
the RPA approximation used within the LMA self-energy
[14,16]. They can be eliminated simply [16] by introduc-
ing a finite width ∝ ωm to the resonance in ImΠ+−(ω),
although we shall not do so here—one gains only a very
small correction to the spectrum (that can easily be de-
duced from the spectra in figure 3 just by smoothing out
the artifacts ‘by eye’).]

Figure 3(b) shows LMA scaling spectra for larger gaps,
δ̃ = 0.5, 2 and 5 (solid lines, in order of increasing spectral
gap). Again the GAIM shows the same tails of the Kondo
resonance as the metallic AIM, although now it is clear
that for such large gap scales the main Kondo resonance
itself is essentially lost.

Next we consider the bound states inside the gap. Fig-
ure 4(a) shows (solid line) the pole position |ω̃p| = ω̃p/ω0

m

versus δ̃ over a wide range of increasing gaps encompass-
ing δ̃ � 1 to δ̃ � 1. The dotted lines show the asymptotic
behaviour as δ̃ → 0 [given by Eq. (45)], and as δ̃ → ∞
(which is easily shown from Eq. (43) to be |ωp| = δ). The
asymptotic forms are in fact seen to be applicable over the
majority of the range of δ̃, with substantial deviations oc-
curring only for δ̃ ∼ 1. In particular, the low-δ̃ asymptote
|ωp| = 2δ̃2 (predicted also by NRG, as discussed in Sect.
3) holds for all gaps up to δ̃ ∼ 0.1. Figure 4(b) shows the
pole position |ωp| as a function of δ̃, but now rescaled in
terms of the gap as |ωp|/δ (such that |ωp|/δ < 1 for poles
in the gap). The figure shows more clearly the rather rapid
crossover in the pole position |ωp|, from the situation aris-
ing for small δ̃ where the two symmetrically-disposed poles
lie close to ω = 0, to the large-δ̃ behaviour where the poles
approach the edges of the gap.

6 Numerical results at finite Ũ

Now we present a survey of the numerics for finite Ũ .
These allow us to determine properties of the system
which are inaccessible to analytic methods, such as the
phase boundary between the GFL and LM phases. We
study these in detail, and show that they compare very
well to the predictions of NRG in Section 3. Second, the
numerics for large-Ũ can be used to verify the asymptotic
Ũ � 1 results of Section 5.
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6.1 Phase boundaries

The LMA phase boundary is obtained as discussed in Sec-
tion 4.1, and is shown in Figure 5 in the (δ/ω0

m(η), η)
plane for three different interaction strengths, Ũ =
U/π∆0 = 5, 6 and 7 (solid lines from top to bottom).

It is seen directly from the figure that the LMA cap-
tures correctly the basic form of the phase boundary dis-
cussed in Section 3: there is a critical δc for any asymmetry
η �= 0, below which the system is a GFL (singlet) phase
and above which it is an LM doublet. For η = 0, i.e. pre-
cisely at particle-hole symmetry, the LM phase prevails
for all δ > 0.

Figure 5 also shows the phase boundary obtained from
the effective low-energy model Heff deduced from the NRG
study of reference [11] (Eq. (11) above). Heff/T 0

K depends
solely on K0/D and α

√
δ/T 0

K (with α a coefficient of pro-
portionality). For given Ũ and η (= 1 + 2εi/U), the cor-
responding value of K0/D may be obtained directly from
a Schrieffer-Wolff transformation; and exact diagonaliza-
tion of equation (11) then enables direct determination of
the critical value of α

√
δ/T 0

K separating the GFL and LM
phases. To compare to the LMA phase boundary (noting
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Fig. 5. Evolution of the LMA phase boundary in the
(δ/ω0

m(η), η) plane, with increasing interaction strength Ũ .
The solid lines from top to bottom are the phase boundaries
for Ũ = 5, 6 and 7; the dotted lines show comparison to the
asymptotic result [11] (see text).

that ω0
m ∝ T 0

K), for given Ũ the constant α is simply cho-
sen to fit the resultant phase boundary of the effective
model to our LMA result at a single η = 0.2 (and we add
further that the resultant α ∼ O(1) is constant to � 3%
as Ũ is varied over the range shown in Fig. 5).

The primary point from Figure 5 is that there is clearly
excellent agreement between the LMA phase boundary
and the asymptotic result [11], particularly for small η.
It is also clear that the agreement becomes better at
larger values of η upon increasing Ũ . The latter obser-
vation is readily explained. First, the NRG result calcu-
lated from equation (11) applies to the gapped Kondo
model. Although the GAIM maps to the Kondo model
via the Schrieffer-Wolff transformation [2], this mapping
holds asymptotically for Ũ � 1 and ε̃i � −1, hence from
equation (10) requires 1

2U(1−η) � 1, and is not therefore
applicable as η tends to 1 (where mixed-valent behaviour
arises). Second, Heff (Eq. (11)) by definition applies in the
limit δ/T 0

K � 1 [see the discussion preceding Eq. (11)].
Since δc/ω0

m (∝ δc/T 0
K) increases rapidly as η increases,

equation (11) is inapplicable even to the Kondo model at
larger η.

6.2 Particle-hole–symmetric limit

We now examine the behaviour in each of the two phases;
starting with the simplest case of particle-hole–symmetry.

Figure 6 shows the evolution of the single-particle spec-
trum, π∆0D(ω) vs. ω/∆0, as the gap is increased at a
fixed Ũ = 7. Figure 6(a) shows the spectra for gaps
δ/ωm = 0.01 � 1 and 5 (solid and dotted lines, respec-
tively). On this ‘all scales’ level the spectra are dominated
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Fig. 6. LMA single-particle spectra, π∆0D(ω) vs. ω/∆0, for
fixed Ũ = 7 at particle-hole symmetry (η = 0). (a) Spectra on
all energy scales, for δ/ω0

m = 0.01 (solid line) and 5 (dotted
line). (b) Spectra on low energy scales, for δ/ω0

m = 0.01, 0.1,
0.3, 1, 3 and 5.

by the Hubbard satellite peaks, centred on ω ∼ ±U/2 and
with HWHM ∼ 2∆0 (the satellites arise also at the level
of static mean-field theory, although [14] UHF underes-
timates their width by a factor of 2 because it neglects
the low-energy inelastic scattering processes that are in-
cluded within the LMA). Figure 6 shows clearly that the
high-energy spectral features are essentially unchanged by
varying the gap on the scale of ω0

m—as expected from scal-
ing arguments—and as such we shall not consider them
further.

Figure 6(b) shows the more complex behaviour that
occurs on the scale of the gap itself, showing the low-
frequency spectrum for δ/ω0

m = 0.01, 0.1, 0.3, 1, 3 and
5 (for clarity only the continuum parts of the spectra
are shown—the poles are discussed below). As for the
Ũ � 1 asymptotics of Section 5, we see that the finite-
Ũ LMA captures the basic result known from NRG: that
the physics of the problem on energy scales much greater
than the gap is virtually unchanged from that of the gap-
less limit. For very small gaps in comparison to ω0

m, the
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Fig. 7. Evolution of the pole positions in the single-particle
spectrum, ωp/ω0

m vs. δ/ω0
m, for Ũ = 7 at particle-hole symme-

try. The circles are the full numerical results, while the dotted
and dashed lines are asymptotes discussed in the text.

spectra show the characteristic Kondo resonance associ-
ated with the local Fermi liquid behaviour of the metal-
lic Anderson model at ω ∼ ω0

m; only on much lower fre-
quency scales is the true, non–Fermi-liquid LM behaviour
(characterized by two poles inside the gap) revealed. As
δ increases in Figure 6(b), the Kondo resonance arising
for δ = 0 is gradually destroyed from the inside, and the
corresponding spectral weight is reassigned to the poles
in the gap. Even when the resonance is completely elim-
inated though, remnants of Kondo physics remain in the
slow logarithmic tails of the erstwhile resonance, which
persist up to non-universal frequency scales on the order
of ∆0.

We now consider the poles inside the gap, arising at
frequencies ω = ±ωp, with ωp given from equation (16)
and equation (3) by solution of

ωp − εi − ∆R(ωp) − Σ̃R
↓ (ωp) = 0. (47)

Figure 7 shows ωp/ω0
m as a function of the gap δ/ω0

m, for
Ũ = 7 as considered above. The circles show the points
obtained by full numerical calculation (the solid line is a
guide to the eye). The dotted line marks the extent of the
gap, δ/ωm, and the dashed line is the approximation

ωp

ω0
m

∼ 2
(

1 − 16∆0

πU

) (
δ

ω0
m

)2

, (48)

which is readily obtained in the same manner as the Ũ � 1
analysis of Section 5.1 [which gives the result Eq. (45)] but
with the leading O(1/Ũ) correction to ωm/ω0

m in equation
(A-10) retained.

In Section 5.1 we showed that the single-particle spec-
trum in the strong coupling limit Ũ � 1 is a universal
function of ω/ω0

m for given δ/ω0
m, and obtained the scal-

ing spectrum analytically (Eq. (39)). Here we test this
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Fig. 8. LMA scaling spectra in the particle-hole–symmetric
limit. π∆0D(ω) vs. ω/ω0

m for (a) fixed δ/ω0
m = 0.1 and Ũ = 4,

5, 6 and 7, and (b) fixed δ/ω0
m = 10 with Ũ = 5 and 7 (solid

lines, top to bottom). In both figures the dotted line is the
corresponding analytic result equation (39).

result by direct comparison to numerical calculations at
finite Ũ . Since D(ω) is a universal function of ω/ω0

m, the
numerical spectra should collapse onto the analytic result
for sufficiently large Ũ .

Figure 8(a) illustrates this behaviour for fixed
δ/ω0

m=0.1: the solid lines from top to bottom are the nu-
merical LMA spectra for Ũ = 4, 5, 6 and 7, while the
dotted line is the asymptotic Ũ � 1 result, equation (39).
As seen in the figure, the spectral collapse discussed above
is apparent; the agreement becomes progressively better
as Ũ increases as one would expect, and the Ũ � 1 re-
sult is a very good approximation to the true spectrum
for values of Ũ as low as 5 or so. A similar comparison
is given in Figure 8(b), this time for a much larger gap,
δ/ω0

m = 10. The solid lines are the numerical spectra for
Ũ = 5 and Ũ = 7 (from top to bottom) while the dotted
line is the Ũ � 1 result; the agreement is again good.
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Fig. 9. Single-particle spectra away from particle-hole sym-
metry. (a) π∆0D(ω) vs. ω/∆0 for Ũ = 6, η = 0.22 and
δ/∆0 = 4.00×10−6 , 1.989×10−5 , 3.58×10−5 and 9.54×10−5

(in order of increasing gap in the figure). (b) Spectra on either
side of δc � 1.99×10−5∆0 for the same Ũ and η: the solid line
is for δ−c , the dotted for δ+

c .

6.3 Away from particle-hole symmetry

We now consider briefly results for dynamics away from
particle-hole symmetry, as the system evolves from the
GFL to the LM phase with increasing gap, δ. For
illustration we consider an asymmetry η = 1 + 2εi/U =
0.22 and Ũ = 6, for which (from the method of Sect. 4.2.2)
the critical gap for the GFL↔LM transition is found to
be δc/∆0 � 1.99 × 10−5.

The evolution of the continuum part of the single-
particle spectrum across the phase boundary is shown in
Figure 9(a), for gaps δ/∆0 = 4.00 × 10−6, 1.989 × 10−5,
3.58× 10−5 and 9.54× 10−5; i.e. for δ/δc � 0.2, 0.999, 1.8
and 4.8, the smallest gap thus corresponding to a point
‘deep’ in the GFL phase, the next to a point just in-
side the GFL phase, and the other two to points in-
side the LM phase. But since all four gaps are much
smaller than the Kondo scale in the absence of the gap,
ω0

m/∆0 ≈ 1.6× 10−3, all the spectra show residual Kondo
resonances for ω � δ and collapse onto the common tails
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Fig. 10. Pole positions in the single-particle spectrum D(ω):
ωp/∆0 vs. δ/∆0, for Ũ = 6 and η = 0.22. The dashed line
marks the phase boundary at δc � 1.99 × 10−5∆0.

occurring in the gapless case δ = 0 [15] when ω � δ. That
this behaviour is correct follows from the discussion at the
end of Section 3, and indicates that the LMA captures the
correct ω � δ physics of the problem in both GFL and
LM phases away from particle-hole symmetry.

Figure 9(b) shows the spectra just on either side of the
phase boundary, the solid line for δ = δ−c (GFL phase),
and the dotted line for δ = δ+

c (LM phase). There is
a slight discontinuity in the spectrum across the phase
transition, not unexpectedly: the NRG effective Hamilto-
nian [11] considered in Section 3 implies that the level-
crossing phase transition is discontinuous, such that dif-
ferent low-energy many-body excited states are accessible
from the GFL and LM ground states (see Fig. 1).

Considering now the bound states in the spectral gap,
Figure 10 shows the pole positions in the single-particle
spectrum ωp/∆0 vs. the gap δ/∆0. In the GFL phase a sin-
gle pole occurs in the gap (here occurring at ωp > 0); while
in the LM phase for δ > δc two distinct poles arise, one
either side of the Fermi level ω = 0, such that the higher
energy excitation emerges discontinuously at δ = δ+

c on
crossing into the LM phase. This behaviour is of course
precisely that arising from the effective NRG Hamilto-
nian equation (11), the low-lying states of which are il-
lustrated schematically in Figure 1 and in terms of which
the poles in Figure 10 can be interpreted directly: in the
GFL phase δ < δc, the single pole in D(ω) for ωp > 0—
corresponding as such to the addition of an electron—
arises from the (−1, 0) → (0, 1

2 ) transition of the effective
low-energy model equation (11); in the LM phase by con-
trast, the pole at ωp < 0 corresponds to the transition
between the same two levels but in the opposite direc-
tion [since (0, 1

2 ) is now the ground state], whereas the
pole arising at a finite, positive frequency as soon as one
enters the LM phase corresponds to the (0, 1

2 ) → (1, 0)
transition of Figure 1. Hence the LMA indeed recovers
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the low-energy physics expected away from particle-hole
symmetry.

Finally, the essential effect of increasing the gap fur-
ther is as seen previously for the particle-hole–symmetric
limit (cf. Fig. 6). As δ/ω0

m increases, what remains of the
Kondo resonance is gradually destroyed from within until
the central resonance itself is destroyed, although the tails
of the resonance persist for ω � δ and do so until δ is of
the order of the non-universal scale ∆0. At lower frequen-
cies, the pole structure continues the trend observed in
Figure 10, with the two poles in the LM phase spectrum
moving slowly outwards toward the edges of the gap as δ
is increased.

7 Single self-energy

Throughout the paper we have focused naturally on the
two–self-energy energy description that is central to the
LMA, with associated self-energies Σ̃σ(ω) (as in Eq. (14))
which determine the local propagator G(ω) via equation
(13). Once G(ω) is known, the conventional single–self-
energy Σ(ω) (which, like G(ω), is independent of spin in
the absence of an applied magnetic field) can of course be
obtained as a byproduct: either from its definition via the
Dyson equation G(ω) = [g(ω)−1 −Σ(ω)]−1 (Eq. (8), with
g(ω) the non-interacting propagator Eq. (3)), or equiva-
lently upon comparison of equation (8) and equation (13)
which yields [15]

Σ(ω) = 1
2 [Σ̃↑(ω) + Σ̃↓(ω)] +

[ 12 (Σ̃↑(ω) − Σ̃↓(ω))]2

g(ω)−1 − 1
2 [Σ̃↑(ω) + Σ̃↓(ω)]

,

(49)
and hence enables Σ(ω) (= ΣR(ω)− isgn(ω)ΣI(ω)) to be
determined directly from the {Σ̃σ(ω)}. We now comment
briefly on the analytic behaviour of Σ(ω) that is character-
istic of both of the GFL and LM phases, at low-frequencies
inside the gap where G(ω)−1 ≡ [ω−εi−∆R(ω)−ΣR(ω)]+
isgn(ω)[0+ +ΣI(ω)] (the imaginary part of the hybridiza-
tion function vanishing inside the gap).

First we show that analyticity alone implies that if
Σ(ω) contains n ≥ 0 poles inside the gap, then G(ω) con-
tains n+1 poles in the gap. To see this, note that ΣI(ω) ≥
0 ∀ω, and separate ΣI(ω) = ΣI

band(ω)+ΣI
pole(ω) where the

‘band’ piece ΣI
band(ω) ≥ 0 is non-vanishing only outside

the gap |ω| > δ, while ΣI
pole(ω) denotes any contributions

from poles inside the gap. From Hilbert transformation it
follows directly that the real part ΣR

band(ω) is a monotoni-
cally decreasing function of ω inside the gap; whence from
equation (7) ∆R(ω) + ΣR

band(ω) is monotonically decreas-
ing inside the gap, from +∞ at ω = −δ to −∞ at ω = +δ.
Now consider the case n = 0 where there are no poles in
Σ(ω) inside the gap, ΣI(ω) = 0 for all |ω| < δ; such that
∆R(ω)+ΣR(ω) ≡ ∆R(ω)+ΣR

band(ω) thus decreases mono-
tonically with ω, from +∞ at ω = −δ to −∞ at ω = +δ.
In consequence, ω − εi − [∆R(ω) + ΣR(ω)] is guaranteed
to vanish once only inside the gap; and hence G(ω) con-
tains a single pole inside the gap. For the case n = 1
where Σ(ω) contains a single pole inside the gap (say at

ω = ω1), ∆R(ω)+ΣR(ω) ≡ ∆R(ω)+ΣR
band(ω)+ΣR

pole(ω),
and it is elementary to show that ∆R(ω) + ΣR(ω) is now
a monotonically decreasing function of ω in the two inter-
vals −δ < ω < ω1 and ω1 < ω < +δ; ranging from +∞
at the lower end of each interval to −∞ at the upper end
of each interval. Hence ω− εi − [∆R(ω)+ΣR(ω)] vanishes
once and only once in each interval; and G(ω) thus con-
tains two poles. Extension of the argument to arbitrary n
is direct.

The behaviour of Σ(ω) in the GFL phase is quite sim-
ple, since as found in the preceding sections G(ω) obtained
from the LMA has a single pole inside the gap. In conse-
quence, from the argument above, Σ(ω) does not have a
pole inside the gap; and we note that this behaviour is
precisely that required from perturbation theory in U to
all orders à la Luttinger (as shown in [13]), reflecting as
such the adiabatic continuity to the non-interacting limit
that is characteristic of the GFL phase.

The LM phase by contrast is more subtle. In this case
we know as above that G(ω) has two poles inside the
gap, one on either side of the Fermi level. Hence Σ(ω)
has a single pole inside the gap. This behaviour is ap-
parent from equation (49), noting that the Σ̃I

σ(ω) vanish
throughout the gap (for both σ =↑ and ↓). This is particu-
larly straightforward to show in the particle-hole symmet-
ric case, where by symmetry Σ̃R

↓ (−ω) = U − Σ̃R
↑ (ω) [15];

and in consequence 1
2 [Σ̃R

↑ (ω = 0) + Σ̃R
↓ (ω = 0)] = U/2

(≡ −εi) – whence the denominator in equation (49) van-
ishes as ω → 0, while the (pure real) numerator re-
mains finite because symmetry is not restored and hence
Σ̃R

↑ (ω = 0) �= Σ̃R
↓ (ω = 0). The single–self-energy Σ(ω)

thus indeed has a pole, and it lies precisely at the Fermi
level: Σ(ω) ∝ 1/ω+, which is the behaviour one expects
from perturbative continuity to the atomic limit of van-
ishing hybridization [13] (as is physically natural for a LM
phase). Away from particle-hole symmetry, the single pole
in Σ(ω) inside the gap now lies at a non-zero frequency,
which is readily shown from equation (49) to occur when
g(ω)−1 = 1

2 [Σ̃R
↑ (ω) + Σ̃R

↓ (ω)]. And on crossing the tran-
sition from the GFL phase to the LM phase, the pole in
Σ(ω) at ω �= 0 arises abruptly; precisely as required from
the general considerations of Section 3.

8 Conclusion

In this paper we have extended the local moment approach
to the gapped AIM. The two-self–energy description and
the self-energy diagrams used in the present approach are
naturally the same as those used in previous LMA studies,
but the precise forms of the self-energies depend crucially
upon the underlying mean-field parameters (|µ| and ei),
the determination of which is very different in the case of
the GAIM.

We explained how symmetry restoration, in combina-
tion with the generalized Friedel sum rule appropriate to
the GAIM [13], can be used to handle the GFL phase. In
the LM phase by contrast, we used simple arguments to
show how the mean-field parameters must be chosen to
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recover the physics of the problem. We then analysed the
particle-hole–symmetric limit of the model analytically,
obtaining universal single-particle scaling spectra for the
model. In addition, the low-frequency bound state (pole)
behaviour of these spectra (for gaps δ small in comparison
to the Kondo scale) was found to be of precisely the form
expected from NRG [11].

A brief survey of numerical results followed. The phase
boundary between the GFL and LM phases was compared
to predictions from the NRG, and found to be in quantita-
tive agreement over the range of parameters for which such
a comparison is appropriate. Analysis of the particle-hole–
symmetric limit at finite-U/∆0 was found to confirm the
asymptotic strong coupling behaviour predicted in Section
5, while away from particle-hole–symmetry we analyzed
the behaviour of the system on both sides of the phase
boundary, showing how our approach indeed captures the
discontinuous nature of the transition in a non-trivial fash-
ion.

We are grateful to the EPSRC for financial support, via Grant
No. EP/D050952/1.

Appendix A: strong coupling analytic results
at particle-hole symmetry

Here we outline in particular the derivation of equation
(36) and equation (37) appropriate to the strong coupling
(Ũ = U/π∆0 � 1) behaviour of the GAIM at particle-hole
symmetry; with the gap δ taken to be any finite multiple
of the low-energy Kondo scale in the absence of the gap,
ω0

m.

A.1 Strong-coupling asymptotics of ωm(δ)

We begin by deriving an expression for the low-energy
scale ωm ≡ ωm(δ) (which will be used in Appendix A.2
below). Our starting point is a result obtained originally
for the metallic AIM [14], where it is shown analytically
that the position of the resonance in ImΠ+−(ω) (i.e.
ω0

m = ωm(δ = 0)) is related to the local moment |µ| by

|µ| Ũ�1∼ |µ0| + ω0
m

U
: δ = 0. (A-1)

Numerically we find it this relation holds also for the
gapped AIM (provided δ/∆0 � 1, as relevant here), viz.

|µ(δ)| Ũ�1∼ |µ0(δ)| + ωm(δ)
U

. (A-2)

Therefore

ωm(δ) ∼ U
[
|µ(δ)| − |µ0(δ)|

]
, (A-3)

and in the δ = 0 limit in particular,

ω0
m ≡ ωm(0) ∼ U

[
|µ(0)| − |µ0(0)|

]
. (A-4)

As discussed in Section 4.2.1, |µ(δ)| = |µ(0)| when the gap
is sufficiently small, and hence we can eliminate |µ(δ)| and
|µ(0)| from equation (A-3) and equation (A-4) to obtain

ωm(δ) ∼ ω0
m − U

[
|µ0(δ)| − |µ0(0)|

]
. (A-5)

This result expresses the δ-dependence of the LMA ωm(δ)
in terms of that of the UHF moment |µ0(δ)|, which can in
turn be calculated analytically from the form of the UHF
spectrum, equation (18), alone. Obtaining this asymptotic
behaviour of |µ0(δ)| is somewhat lengthy, but in strong-
coupling Ũ � 1 the result is

|µ0(δ)| − |µ0(0)| ∼ 8∆0δ

πU2

[
1 − 8∆0

πU
ln

(
4δ

U

)]
, (A-6)

whence equation (A-5) gives

ωm(δ)−ω0
m ∼ −8∆0δ

πU

{
1 − 8∆0

πU

[
ln

(
4δ

ω0
m

)
+ ln

(
ω0

m

U

)]}
.

(A-7)
Since the LMA for the metallic AIM [14] gives

ω0
m = βU exp

(−πU

8∆0

)
(A-8)

with β a pure constant O(1), it follows that

ωm(δ) − ω0
m ∼ −8∆0δ

πU

{
2 − 8∆0

πU

[
ln

(
4δ

ω0
m

)
+ ln β

]}
.

(A-9)
Hence to leading order in ∆0/U , the behaviour of the low-
energy scale of the GAIM is

ωm(δ)
ω0

m

∼ 1 − 16∆0

πU

δ

ω0
m

, (A-10)

(where it is implicitly understood that for δ >
πUω0

m/(16∆0), the scale ωm(δ) remains at zero accord-
ing to Fig. 2).

A.2 Strong-coupling behaviour of the single-particle
spectrum

We now outline how the asymptotic strong-coupling be-
haviour of the LMA self-energies can be obtained. Once
these are known, the spectrum D(ω) follows in closed form
as considered in Section 5.

We begin by considering the form of ImΠ+−(ω) in
strong-coupling. As mentioned briefly in Section 4, the
dominant excitation in ImΠ+−(ω) for finite Ũ is either
a pole or a resonance centred on ω = ωm, depending on
the size of δ. In strong coupling Ũ � 1 however, as for
the case of the metallic AIM [14], the sharp resonance in
Im Π+−(ω) tends asymptotically to a pole; all its weight
lies at a frequency ωm > 0, and it is normalized according
to [14]

1
π

∫ ∞

0

dω Im Π+−(ω) Ũ�1∼ 1. (A-11)
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Hence we write

Im Π+−(ω) = πδ(ω − ωm). (A-12)

By inserting this into the LMA dynamical self-energy
Σ↑(ω) —which can be conveniently expressed as [14]

Σ↑(ω) =
U2

π

∫ ∞

−∞
dω1 ImΠ+−(ω1)

×
[
θ(ω1)G−

↓ (ω1 + ω) + θ(−ω1)G+
↓ (ω1 + ω)

]
(A-13)

with

G±
σ (ω) =

∫ ∞

−∞
dω1

D0
σ(ω1)θ(±ω1)

ω − ω1 ± i0+
(A-14)

—it is readily shown [16] that

ΣR
↑ (ω) Ũ�1∼ U2 ReG−

↓ (ω + ωm). (A-15)

The mean-field spectrum D0
σ(ω) required to calculate

ReG−
↓ (ω) itself follows from equations (15) and (18) (with

ei = 0 at particle-hole symmetry). In strong-coupling,
|µ| → 1 and one obtains

D0
σ(ω) = bD0

σ(ω) + Qσδ(ω − ω0
p,σ) (A-16)

where the ‘band’ contribution to the spectrum, bD0
σ(ω) is

bD0
σ(ω) =

π−1∆0θ(|ω| − δ)
[ω + 1

2σU − ∆R(ω)]2 + ∆2
0

(A-17)

and the pole position is given by

ω0
p,σ + 1

2σU = ∆R(ω0
p,σ). (A-18)

For D0
↓(ω) in particular it is readily shown that the pole

lies at a positive frequency; hence, inserting equation
(A-16) into equation (A-14),

ReG−
↓ (ω + ωm) =

∫ −δ

−∞
dω1

bD0
↓(ω1)P

(
1

ω + ωm − ω1

)
.

(A-19)
(where we use the fact that bD0

↓(ω) in equation (A-17)
has no weight for |ω| < δ to replace the upper limit
of the integral in equation (A-14) by −δ). This integral
is dominated by its logarithmic singularity; and since
D0

↓(ω) ∼ 4∆0/(πU2) is a slowly-varying function of ω

when δ < |ω| � U we can write [14]

ReG−
↓ (ω) ∼ 4∆0

πU2

∫ −δ

−U

dω1 P
(

1
ω + ωm − ω1

)
(A-20)

where we have replaced the lower limit in equation (A-19)
by a high-energy cutoff of −U , as likewise employed for the
metallic AIM [14,16] (and the precise value of the cutoff
being immaterial [14,16]).

Performing the integration in equation (A-20) and sub-
stituting the result into equation (A-15), yields

ΣR
↑ (ω) ∼ −4∆0

π
ln

∣∣∣∣
ω + ωm + δ

U

∣∣∣∣ (A-21)

(where ω + ωm + U in the denominator of the logarithm
has naturally been replaced by U). The full LMA result
for εi + Σ̃R

↑ (ω) (with εi = −U/2 at particle-hole symme-
try), including the static self-energy contribution Σ̃0

↑ from
equation (16) (which vanishes asymptotically in strong
coupling where |µ| ≡ 1), then follows as

εi + Σ̃R
↑ (ω) ∼ −U

2
− 4∆0

π
ln

∣∣∣∣
ω + ωm + δ

U

∣∣∣∣ . (A-22)

We now rewrite equation (A-22) in a more convenient
form by noting that for the gapless AIM, δ = 0, the sym-
metry restoration condition requires that εi + Σ̃R

↑ (ω =
0) = 0 (as follows from Eq. (22) together with the general
result that εi + Σ̃R

↑ (ω) = −[εi + Σ̃R
↓ (−ω)] at particle-hole

symmetry). Hence from equation (A-22) with δ = 0,

εi + Σ̃R
↑ (ω = 0) ∼ −U

2
− 4∆0

π
ln

∣∣∣∣
ω0

m

U

∣∣∣∣ = 0. (A-23)

Subtracting equation (A-23) from equation (A-22) then
gives

εi + Σ̃R
↑ (ω) ∼ −4∆0

π
ln

∣∣∣∣
ω + ωm + δ

ω0
m

∣∣∣∣ . (A-24)

Finally, we insert the explicit form of ωm(δ) given by
equation (A-10) into equation (A-24), to obtain the lead-
ing asymptotic behaviour

−U

2
+ Σ̃R

↑ (ω) Ũ�1∼ −4∆0

π
ln

(
ω̃ + δ̃ + 1

)
(A-25)

where ω̃ = ω/ω0
m and δ̃ = δ/ω0

m (and we use δ̃(1− 16
π2Ũ

) →
δ̃ for Ũ � 1).

The corresponding ΣI
↑(ω) ≡ Σ̃I

↑(ω) follows likewise
from equations (A-12)–(A-14) as

Σ̃I
↑(ω) = πU2θ(−ω)θ(−ω − ωm)D0

↓(ω + ωm). (A-26)

Since as mentioned above the pole in D0
↓(ω) lies above ω =

0, the only contribution to Σ̃I
↑(ω) is from the band part

of D0
↓(ω), and hence from equation (A-17) with D0

↓(ω +
ωm) ∼ [4∆0/πU2]θ(|ω̃ + ω̃m| − δ̃), the leading asymptotic
behaviour of Σ̃I

↑(ω) for Ũ � 1 is simply

Σ̃I
↑(ω) Ũ�1∼ 4θ

[
−(ω̃ + δ̃ + 1)

]
∆0. (A-27)

Equation (A-25) and equation (A-27) are the central
equations for the dynamical self-energies employed in
Section 5.
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